Electromechanical oscillations in bilayer graphene
نویسندگان
چکیده
Nanoelectromechanical systems constitute a class of devices lying at the interface between fundamental research and technological applications. Realizing nanoelectromechanical devices based on novel materials such as graphene allows studying their mechanical and electromechanical characteristics at the nanoscale and addressing fundamental questions such as electron-phonon interaction and bandgap engineering. In this work, we realize electromechanical devices using single and bilayer graphene and probe the interplay between their mechanical and electrical properties. We show that the deflection of monolayer graphene nanoribbons results in a linear increase in their electrical resistance. Surprisingly, we observe oscillations in the electromechanical response of bilayer graphene. The proposed theoretical model suggests that these oscillations arise from quantum mechanical interference in the transition region induced by sliding of individual graphene layers with respect to each other. Our work shows that bilayer graphene conceals unexpectedly rich and novel physics with promising potential in applications based on nanoelectromechanical systems.
منابع مشابه
Gate-defined quantum confinement in suspended bilayer graphene.
Quantum-confined devices that manipulate single electrons in graphene are emerging as attractive candidates for nanoelectronics applications. Previous experiments have employed etched graphene nanostructures, but edge and substrate disorder severely limit device functionality. Here we present a technique that builds quantum-confined structures in suspended bilayer graphene with tunnel barriers ...
متن کاملControlling energy gap of bilayer graphene by strain.
Using the first principles calculations, we show that mechanically tunable electronic energy gap is realizable in bilayer graphene if different homogeneous strains are applied to the two layers. It is shown that the size of the energy gap can be simply controlled by adjusting the strength and direction of these strains. We also show that the effect originates from the occurrence of strain-induc...
متن کاملMultiband transport in bilayer graphene at high carrier densities
We report a multiband transport study of bilayer graphene at high carrier densities. Employing a poly(ethylene)oxide-CsClO4 solid polymer electrolyte gate we demonstrate the filling of the high-energy subbands in bilayer graphene samples at carrier densities |n| 2.4 × 1013 cm−2. We observe a sudden increase of resistance and the onset of a second family of Shubnikov–de Haas (SdH) oscillations a...
متن کاملConduction coefficient modeling in bilayer graphene based on schottky transistors
Nowadays carbon nanoparticles are applied on the island of single electron transistor and Nano-transistors. The basis of single electron devices (SEDs) is controllable single electron transfer between small conducting islands. Based on the important points in quantum mechanics, when a wave passes through several spatial regions with different boundaries, the wave function of the first region di...
متن کاملThe Local Density of States in Monolayer and Bilayer Graphene in the Presence of an Impurity
We analyze the effect of a single localized impurity on the local density of states in monoand bilayer undoped graphene. We show that for monolayer graphene the Friedel oscillations generated by intranodal scattering of quasiparticles obey an inverse-square law, while those generated by internodal scattering obey an inverse law. Unlike the former, the latter oscillations may break rotational sy...
متن کامل